Li Intercalation in MoS2: In Situ Observation of Its Dynamics and Tuning Optical and Electrical Properties.

نویسندگان

  • Feng Xiong
  • Haotian Wang
  • Xiaoge Liu
  • Jie Sun
  • Mark Brongersma
  • Eric Pop
  • Yi Cui
چکیده

Two-dimensional layered materials like MoS2 have shown promise for nanoelectronics and energy storage, both as monolayers and as bulk van der Waals crystals with tunable properties. Here we present a platform to tune the physical and chemical properties of nanoscale MoS2 by electrochemically inserting a foreign species (Li(+) ions) into their interlayer spacing. We discover substantial enhancement of light transmission (up to 90% in 4 nm thick lithiated MoS2) and electrical conductivity (more than 200×) in ultrathin (∼2-50 nm) MoS2 nanosheets after Li intercalation due to changes in band structure that reduce absorption upon intercalation and the injection of large amounts of free carriers. We also capture the first in situ optical observations of Li intercalation in MoS2 nanosheets, shedding light on the dynamics of the intercalation process and the associated spatial inhomogeneity and cycling-induced structural defects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication of single-layer MS2 (M=Mo, W) nanosheets using Li battery setup

Lithium intercalation is a convenient method to prepare few-layer and single-layer MS2 (M=Mo, W) nanosheets. This method is, however, very time-consuming (few days) and it is difficult to control the reaction parameters. To overcome these drawbacks, we have proposed a method to use an Li battery set-up to significantly reduce the reaction time (few hours) and electrochemically intercalate lithi...

متن کامل

In-Situ Polymerization of UHMWPE Using Bi-Supported Ziegler-Natta Catalyst of MoS2 Oxide/MgCl2 (Ethoxide Type)/TiCl4/TiBA: Study of Thermo-Mechanical Properties of System

The use of UHMWPE has attracted the attention of many researchers and industries. The aim of the present work is to fabricate UHMWPE/MoS2-Oxide nano-composites using in-situ polymerization. For this purpose, modified molybdenum disulfide was used. In order to perform the polymerization, a Ziegler-Natta catalytic system, with MoS2-Oxide and magnesium Ethoxide as support, was used. In order to fa...

متن کامل

Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction.

The ability to intercalate guest species into the van der Waals gap of 2D layered materials affords the opportunity to engineer the electronic structures for a variety of applications. Here we demonstrate the continuous tuning of layer vertically aligned MoS2 nanofilms through electrochemical intercalation of Li(+) ions. By scanning the Li intercalation potential from high to low, we have gaine...

متن کامل

In Situ Visualization of Lithium Ion Intercalation into MoS2 Single Crystals using Differential Optical Microscopy with Atomic Layer Resolution.

Atomic-level visualization of the intercalation of layered materials, such as metal chalcogenides, is of paramount importance in the development of high-performance batteries. In situ images of the dynamic intercalation of Li ions into MoS2 single-crystal electrodes were acquired for the first time, under potential control, with the use of a technique combining laser confocal microscopy with di...

متن کامل

Photoluminescence from chemically exfoliated MoS2.

A two-dimensional crystal of molybdenum disulfide (MoS2) monolayer is a photoluminescent direct gap semiconductor in striking contrast to its bulk counterpart. Exfoliation of bulk MoS2 via Li intercalation is an attractive route to large-scale synthesis of monolayer crystals. However, this method results in loss of pristine semiconducting properties of MoS2 due to structural changes that occur ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 15 10  شماره 

صفحات  -

تاریخ انتشار 2015